
No. 2021-1542

IN THE

United States Court of Appeals
for the Federal Circuit

SAS INSTITUTE, INC.,

Plaintiff-Appellant,

v.

WORLD PROGRAMMING LIMITED,

Defendant-Appellee.

On Appeal from the United States District Court for the Eastern District of Texas
Case No. 2:18-cv-00295-JRG, Hon. J. Rodney Gilstrap, Chief Judge

BRIEF OF 54 COMPUTER SCIENTISTS

IN SUPPORT OF APPELLEE AND AFFIRMANCE

Jef Pearlman
INTELLECTUAL PROPERTY &

TECHNOLOGY LAW CLINIC
UNIVERSITY OF SOUTHERN

CALIFORNIA GOULD SCHOOL
OF LAW

699 Exposition Blvd.
Los Angeles, CA 90089-0071
(213) 740-7088
jef@law.usc.edu

Counsel for Amici Curiae

Case: 21-1542 Document: 60 Page: 1 Filed: 08/31/2021

FORM 9. Certificate of Interest Form 9 (p. 1)
July 2020

UNITED STATES COURT OF APPEALS
FOR THE FEDERAL CIRCUIT

CERTIFICATE OF INTEREST

Case Number

Short Case Caption

Filing Party/Entity

Instructions: Complete each section of the form. In answering items 2 and 3, be
specific as to which represented entities the answers apply; lack of specificity may
result in non-compliance. Please enter only one item per box; attach
additional pages as needed and check the relevant box. Counsel must
immediately file an amended Certificate of Interest if information changes. Fed.
Cir. R. 47.4(b).

I certify the following information and any attached sheets are accurate and
complete to the best of my knowledge.

Date: _________________ Signature:

 Name:

2021-1542

SAS Institute, Inc. v. World Programming Limited

54 Computer Scientists (see Attachment A for list)

Jeffrey Theodore Pearlman

/s/Jeffrey Theodore Pearlman08/30/2021

Case: 21-1542 Document: 60 Page: 2 Filed: 08/31/2021

FORM 9. Certificate of Interest Form 9 (p. 2)
July 2020

1. Represented
Entities.

Fed. Cir. R. 47.4(a)(1).

2. Real Party in
Interest.

Fed. Cir. R. 47.4(a)(2).

3. Parent Corporations
and Stockholders.

Fed. Cir. R. 47.4(a)(3).

Provide the full names of
all entities represented
by undersigned counsel in
this case.

Provide the full names of
all real parties in interest
for the entities. Do not
list the real parties if
they are the same as the
entities.

Provide the full names of
all parent corporations
for the entities and all
publicly held companies
that own 10% or more
stock in the entities.

☐ None/Not Applicable ☐ None/Not Applicable

Additional pages attached

✔ ✔

54 Computer Scientists
(see Attachment A for list)

✔

Case: 21-1542 Document: 60 Page: 3 Filed: 08/31/2021

FORM 9. Certificate of Interest Form 9 (p. 3)
July 2020

4. Legal Representatives. List all law firms, partners, and associates that (a)
appeared for the entities in the originating court or agency or (b) are expected to
appear in this court for the entities. Do not include those who have already
entered an appearance in this court. Fed. Cir. R. 47.4(a)(4).

None/Not Applicable Additional pages attached

5. Related Cases. Provide the case titles and numbers of any case known to be
pending in this court or any other court or agency that will directly affect or be
directly affected by this court’s decision in the pending appeal. Do not include the
originating case number(s) for this case. Fed. Cir. R. 47.4(a)(5). See also Fed. Cir.
R. 47.5(b).

None/Not Applicable Additional pages attached

6. Organizational Victims and Bankruptcy Cases. Provide any information
required under Fed. R. App. P. 26.1(b) (organizational victims in criminal cases)
and 26.1(c) (bankruptcy case debtors and trustees). Fed. Cir. R. 47.4(a)(6).

None/Not Applicable Additional pages attached

✔

✔

✔

Case: 21-1542 Document: 60 Page: 4 Filed: 08/31/2021

A-1

ATTACHMENT A

List of Computer Scientist Amici Curiae (in alphabetical order):

1. Dr. Harold Abelson
2. Jon Bentley
3. Matthew Bishop
4. Joshua Bloch
5. Gilad Bracha
6. Daniel Bricklin
7. Frederick P. Brooks, Jr.
8. R.G.G. Cattell
9. David Clark
10. William Cook
11. Thomas H. Cormen
12. Miguel de Icaza
13. Dr. L Peter Deutsch
14. Whitfield Diffie
15. David L. Dill
16. Dawson Engler
17. Bob Frankston
18. Neal Gafter
19. Erich Gamma
20. Andrew Glover
21. Allan Gottlieb
22. Robert Harper
23. Maurice Herlihy
24. Tom Jennings
25. Alan Kay
26. Brian Kernighan
27. David Klausner
28. Kin Lane
29. Ed Lazowska
30. Douglas Lea
31. Bob Lee
32. Harry Lewis
33. Douglas McIlroy
34. Paul Menchini
35. James H. Morris
36. Peter Norvig

Case: 21-1542 Document: 60 Page: 5 Filed: 08/31/2021

A-2

37. Martin Odersky
38. David Patterson
39. Tim Peierls
40. Curtis Schroeder
41. Robert Sedgewick
42. Mary Shaw
43. Alfred Z. Spector
44. Michael Stonebraker
45. Ivan E. Sutherland
46. Andrew Tanenbaum
47. Brad Templeton
48. Andries van Dam
49. Guido van Rossum
50. John Villasenor
51. Jan Vitek
52. James Waldo
53. Dan Wallach
54. Frank Yellin

Case: 21-1542 Document: 60 Page: 6 Filed: 08/31/2021

vii

TABLE OF CONTENTS

CERTIFICATE OF INTEREST ... ii
TABLE OF AUTHORITIES ... viii
INTEREST OF AMICI CURIAE .. 1

SUMMARY OF ARGUMENT ... 3

ARGUMENT ... 5

I. The industry has long recognized that reimplemention of
specifications is pro-innovation and noninfringing. .. 6

A. A language’s specification is an idea while its implementation
is software. ... 6

B. Industry practice has always supported reimplementing a
specification. .. 8

II. The “SAS System” is a combination of uncopyrightable ideas and
copyrightable software that wasn’t copied. ...11

III. What SAS and its amici call “input formats” are simply a free-to-use
programming language. ...13

A. The “input formats” are a programming language.13

B. Programming languages like the “input formats” are not
copyrightable computer programs. ..15

C. Creativity is a red herring in this case, as creativity alone does
not create copyright protection. ...16

D. It is irrelevant that there are other ways to create incompatible
competitive software. ..17

IV. “Output Formats” are merely the results of executing the user-
provided code. ..18

CONCLUSION ..21

APPENDIX — LIST OF AMICI ..B-1

CERTIFICATE OF COMPLIANCE ...C-1

Case: 21-1542 Document: 60 Page: 7 Filed: 08/31/2021

viii

TABLE OF AUTHORITIES

Cases

Alice Corp. Pty. v. CLS Bank Int'l,
573 U.S. 208 (2014) ...17

Baker v. Selden,
101 U.S. 99 (1879) ...17

Google LLC v. Oracle Am., Inc.,
141 S. Ct. 1183 (2021) ...5, 10

Lotus Dev. Corp. v. Borland Int'l, Inc.,
49 F.3d 807 (1st Cir. 1995) ..10

SAS Inst. Inc. v. World Programming Ltd.,
64 F. Supp. 3d 755 (E.D.N.C. 2014) ... 15, 16

Statutes

17 U.S.C. § 101 ..6, 15

Other Authorities

Bloch, Joshua J., A Brief, Opinionated History of the API,
Proceedings of the Companion Publication of the 2014 ACM SIGPLAN
Conference on Systems, Programming, and Applications: Software for
Humanity (2014) .. 8

Dennis Ritchie, Reply to alt.folklore.computers Usenet Post Coherent
(Apr. 10, 1998) ... 8

Case: 21-1542 Document: 60 Page: 8 Filed: 08/31/2021

1

INTEREST OF AMICI CURIAE1

Amici are 54 computer scientists, engineers, and computer science

professors who are pioneering and influential figures in the computer industry.2

Amici include the architects of iconic computers including the IBM S/360;

languages such as AppleScript, AWK, C, PL/I, Python, Scala, Scheme, Standard

ML, and Smalltalk. Amici are responsible for key advances in the field, including

in computer graphics, computer animation, computer system architecture, cloud

computing, algorithms, public key cryptography, object-oriented programming,

relational databases, design patterns, virtual reality, and the spreadsheet. Amici

wrote the standard college textbooks in areas including artificial intelligence,

algorithms, computer architecture, computer graphics, computer security,

functional programming, Java programming, operating systems, software

engineering, and the theory of programming languages.

Amici are widely recognized for their achievements. They include 4

Association for Computing Machinery (ACM) Turing Award recipients (computer

science’s most prestigious award); 17 ACM Fellows; 7 Institute of Electrical and

1 No party or party’s counsel authored this brief in whole or in part or contributed
money that was intended to fund preparing or submitting this brief. No one other
than amicus and its counsel contributed money that was intended to fund preparing
or submitting this brief. Pursuant to Fed. R. App. P. 29(a)(2), all parties have
consented to the filing of this brief.
2 Short biographies of Amici are provided in the Appendix.

Case: 21-1542 Document: 60 Page: 9 Filed: 08/31/2021

2

Electronics Engineers (IEEE) Fellows; 4 Computer History Museum (CHM)

Fellows; 3 National Academy of Sciences (NAS) Members; 12 National Academy

of Engineering (NAE) Members; 3 American Association for the Advancement of

Science (AAAS) Members; 9 American Academy of Arts and Sciences (AAoAS)

Members; 2 National Medal of Technology recipients; and numerous professors at

many of the world’s leading universities.

As computer scientists, Amici have long relied on reimplementing languages

to create compatible software. They join this brief because they believe, based on

their extensive experience with and knowledge of computer software and

programming, that the decision below should be affirmed and that reversing it

would threaten to upend decades of settled expectations across the computer

industry and chill continued innovation in the field.

Amici submit this brief to offer the Court their technical expertise and

industry knowledge. Specifically, Amici address some of the arguments and

technical assertions made by the parties and other amici, including the three

computer scientists supporting SAS (Williams, Layman, and Sherriff in the

Williams, Layman, and Sherriff Brief).3

3 A number of Amici previously submitted amicus briefs to the Supreme Court in
its recent consideration of Google v. Oracle. In that case, at issue was the
copyrightability of Application Programming Interfaces (APIs), which extend the
Java language, and Google’s fair use in copying those APIs. Much of the

Case: 21-1542 Document: 60 Page: 10 Filed: 08/31/2021

3

SUMMARY OF ARGUMENT

Plaintiff SAS Institute, Inc. (SAS) alleges that World Programming Limited

(WPL) has infringed copyrights covering the “SAS System.” While much of this

appeal concerns the burden of proof for what is protectable in that “system,” the

Court should not lose sight of the underlying allegations; even as described by

SAS, nothing protectable has been copied.

What SAS calls the “SAS System” encompasses a wide variety of materials

and ideas. There is no dispute that some are copyrightable, while others are not.

Critically, while the SAS System includes a copyrightable software

implementation of a programming language, SAS does not allege that WPL copied

any of this software. Instead, it alleges that WPL unlawfully copied what SAS calls

“input formats” and “output designs.” These terms, however, mislead more than

they inform. At their core, they are merely synonyms for a programming language

and the output of user-designed software using that language—the “specifications”

for that language. Neither is copyrightable.

additional explanation provided in that brief applies in this case. If anything, the
“formats” at issue here are a core part of the SAS language and therefore even
further from copyrightable subject matter than the APIs in Google v. Oracle. For
additional detail, Amici refer this Court to the Brief Amici Curiae of Eighty Three
Computer Scientists (Jan. 13, 2020), Google LLC v. Oracle Am., Inc., 141 S. Ct.
1183 (2021), https://perma.cc/H8JE-C5NT.

Case: 21-1542 Document: 60 Page: 11 Filed: 08/31/2021

4

Since software was invented, developers have been writing code that is

compatible with existing products. This has, from the start, included writing code

that understands existing programming languages. One party may design a

programming language and write software—the “implementation”—that

understands that language. But other parties have historically been free to write

their own “reimplementations” that understand the same language. Here, SAS

admits that the language is free for anyone to write code in, but asserts that only

SAS can offer software that reads and understands that code. But a language is not

a copyrightable work, and it certainly makes no sense for a language to be

uncopyrightable for writing but copyrightable for reading.

SAS also asserts that if anyone else writes software that understands that

language, they infringe by producing the same output that the SAS System

produces. This is similarly untenable. The outputs of a program are determined by

the code written by the user, not by SAS, and by the uncopyrightable system of

rules for the language it uses. To the extent there is creativity in the output in those

programs, it belongs almost exclusively to the party who wrote them—and that

party is not SAS.

SAS’s positions are incompatible with the law and norms that have driven

the software revolution. This Court should affirm the decision below and preserve

Case: 21-1542 Document: 60 Page: 12 Filed: 08/31/2021

5

one of the major features that have made the software industry so vibrant for the

past half-century.

ARGUMENT

The court below correctly concluded that SAS had failed to meet its burden

to show that any protectable element of the SAS System was copied. This is more

than a failure to meet a burden, though. As a matter of law, no copyrightable

element was actually copied. The “input formats” and “output designs” allegedly

copied by WPL are uncopyrightable ideas, while the software implementing those

ideas was not copied.

What SAS calls “input formats” and “output designs” are known in the

industry as the input and output “specifications” or “interfaces” of a language. The

software development industry has long understood and relied on the proposition

that these specifications are free to reimplement for those wishing to offer a

competing, compatible product. This has spurred innovation across the industry.

The Supreme Court recently decided a related issue in a manner that permitted

reimplementation, consistent with 50 years of this industry practice. See Google

LLC v. Oracle Am., Inc., 141 S. Ct. 1183 (2021). This Court should do the same by

affirming the decision below. A contrary result could upend this longstanding

driver of competition and innovation.

Case: 21-1542 Document: 60 Page: 13 Filed: 08/31/2021

6

I. THE INDUSTRY HAS LONG RECOGNIZED THAT
REIMPLEMENTION OF SPECIFICATIONS IS PRO-INNOVATION
AND NONINFRINGING.

SAS’s fundamental complaint is that WPL “create[d] a clone of the SAS

Software,” to compete with SAS. SAS Brief at 1 (quotation omitted). But

independent, lawful development of competitive, compatible, drop-in replacements

for software without copying that software has been a part of the marketplace since

there was a software marketplace. Programming languages, in particular, are often

the subject of this type of competition, which is critical to maintaining that robust

marketplace.

A. A language’s specification is an idea while its implementation is
software.

To understand this case, it is critical to recognize and keep in mind the

difference between a language’s specification and implementation. The

specification tells developers how to write code that will successfully execute, as

well as what that code will do when it executes. It tells both users and

implementers what commands the system offers, what additional information

needs to be provided with those commands, and what the results should be. It is a

set of ideas. Those ideas may be communicated through a written manual or a web

page, but they are neither a “work” in a copyright sense nor a “set of statements” to

be executed by a computer. See 17 U.S.C. § 101. They are a shared set of rules that

allow programmers to use the language or to write new implementations.

Case: 21-1542 Document: 60 Page: 14 Filed: 08/31/2021

7

The implementation is the software that takes programs written in the

appropriate language and executes them. The implementer, like the users of the

language, must know and conform to the specification. But the implementation is

actual software that is executed by a computer. The output of the software is, for

the most part, dictated by the specification and the input provided by the user.

There are many ways for the implementation to produce the correct result. But if

the implementer has done its job, then the same input code will always produce

essentially the same results. The implementation is, generally, copyrightable.

There appears to be no dispute here that WPL has written its own

implementation, or that it did so “from scratch, using a different programing

language and employing a unique ‘sequence, structure, and organization.’” WPL

Brief at 9 (record citations omitted). That software understands the same input

formats—that is, the same language—as the software written by SAS. This is

called “reimplementation” and is part and parcel of lawfully creating competitive

software. The overlap between the original implementation and the

reimplementation is solely the functionality of software, including what types of

inputs it understands and what output it produces. These are not the subject of

copyright.

Case: 21-1542 Document: 60 Page: 15 Filed: 08/31/2021

8

B. Industry practice has always supported reimplementing a
specification.

Copyright’s protection of implementations but not ideas allows developers

to create competitive, compatible software. This capability has driven the software

industry since its inception. There are myriad examples; this table presents just a

few, and * indicates examples that are also programming languages:

Interface Creator Year Reimplementer Year
FORTRAN* IBM 1958 Univac 1961
IBM S/360 ISA IBM 1964 Amdahl Corp. 1970
C* AT&T / Bell

Labs
1976 Mark Williams Co. 1980

Unix AT&T / Bell
Labs

1976 Mark Williams Co. 1980

VT100 Escape
Sequences

Digital
Equipment

1978 Heathkit 1980

IBM PC BIOS IBM 1981 Phoenix Technologies 1984
MS-DOS CLI Microsoft 1981 FreeDOS Project 1998
Hayes modem
command set

Hayes Micro 1982 Anchor Automation 1985

PostScript* Adobe 1985 Aladdin Enterprises 1988
SMB Microsoft 1992 Samba Project 1993
Win32 Microsoft 1993 Wine Project 1996
Java* Sun 1998 Google/Android 2008
Delicious web API Delicious 2003 Pinboard 2009

Bloch, Joshua J., A Brief, Opinionated History of the API, Proceedings of the

Companion Publication of the 2014 ACM SIGPLAN Conference on Systems,

Programming, and Applications: Software for Humanity (2014). See also Dennis

Ritchie, Reply to alt.folklore.computers Usenet Post Coherent (Apr. 10, 1998),

Case: 21-1542 Document: 60 Page: 16 Filed: 08/31/2021

9

https://perma.cc/Y7XC-9YWE (describing AT&T’s visit to the developer of a

UNIX reimplementation and decision to move on after finding no evidence code

was copied).

Williams, Layman, and Sherriff argue that “WPL is free to create a

competing program that offers similar statistical tools. Other companies have,

including IBM and Microsoft.” Williams, Layman, and Sherriff Brief at 5. This is

true, but irrelevant. That other companies have chosen not to reimplement a

platform doesn’t indicate that doing so is impermissible. There are myriad word

processors possessing many different document formats, but many of them can

read or write formats “belonging” to the others. Each individual developer decides

for themself whether or not to reimplement preexisting interfaces based on a

variety of factors unrelated to copyright law.

What Williams, Layman, and Sherriff refer to as “knockoff product[s],” id.

at 5, are critical to the software development ecosystem. They permit developers to

leverage the knowledge and experience they have writing a particular language

when they move to a new system offered by another party—a system that may be

faster, more powerful, or run on different devices. Forbidding such compatibility

would result in “lock-in,” where developers are unable to move to other,

potentially better platforms because copyright law demands they learn new ways to

do the same things.

Case: 21-1542 Document: 60 Page: 17 Filed: 08/31/2021

10

To the contrary, courts have recognized benefits of reimplementation for

decades, most recently in Google v. Oracle:

The record here demonstrates the numerous ways in which
reimplementing an interface can further the development of computer
programs. The jury heard that shared interfaces are necessary for
different programs to speak to each other. It heard that the
reimplementation of interfaces is necessary if programmers are to be
able to use their acquired skills. It heard that the reuse of APIs is
common in the industry.

Google LLC v. Oracle Am., Inc., 141 S. Ct. at 1203–04. See also Lotus Dev. Corp.

v. Borland Int'l, Inc., 49 F.3d 807, 821 (1st Cir. 1995), aff’d, 516 U.S. 233 (1996)

(Boudin, J., concurring) (“it is hard to see why customers who have learned the

Lotus menu and devised macros for it should remain captives”).

Williams, Layman, and Sherriff argue that “[w]hen a competitor can merely

duplicate the designs of an existing product, there is no incentive to make a better

version of the software.” Williams, Layman, and Sherriff Brief at 26. This is

untrue. There are many ways, as the Supreme Court put it, that reimplementation

“can further the development of computer programs.” Google v. Oracle, 141 S. Ct.

at 1203. Resources can be devoted to developing better products rather than

making up new names for old things. These competing, compatible products may

then be faster, have additional features, produce more accurate results, run on

different hardware or operating systems, or have numerous other advantages. Thus,

Case: 21-1542 Document: 60 Page: 18 Filed: 08/31/2021

11

such software does not, as they say, “tr[y] to do the same thing in the same way.”

Id. at 30. It tries to do a compatible thing in a better way.

On the other hand, forbidding reimplementation can often remove the

motivation to improve. Because it locks in developers and users, there is little

incentive to improve the original product. Imagine if the first automobile

manufacturer retained a copyright-length monopoly on the layout of the car, the

shape of the steering wheel, and the location of the accelerator and brake pedals. It

is hard to believe this would have led to a better and more competitive car industry.

The ability to compete for existing users by reimplementing software has

created a virtuous cycle in which competitors drive each other to improve. Entire

software ecosystems form around successful interfaces, leading to even more

innovative products and capabilities. The result is software and computing

hardware that has become vastly more powerful, flexible, and capable over the

nearly 70 years they have existed.

II. THE “SAS SYSTEM” IS A COMBINATION OF
UNCOPYRIGHTABLE IDEAS AND COPYRIGHTABLE
SOFTWARE THAT WASN’T COPIED.

SAS obfuscates the scope of its infringement allegations by repeatedly

referring to its “SAS System” as a “computer program,” e.g., SAS Brief at 1, 9, 52,

and arguing that as a whole it is creative, original, and copyrighted. E.g., id. at 2.

Williams, Layman, and Sherriff similarly describe the SAS System as a

Case: 21-1542 Document: 60 Page: 19 Filed: 08/31/2021

12

“proprietary computer program.” Williams, Layman, and Sherriff Brief at 3. Both

of these are misleading, hiding the complexity of what the SAS System actually is.

What SAS calls the SAS System is a platform consisting of a broad set of

features. These include not just actual computer programs written by SAS (like

compilers and libraries), but “non-literal elements, namely the SAS System’s input

formats, output designs, and naming and syntax.” Appx6. Despite describing the

System as a computer program, even Williams, Layman, and Sherriff actually

recognize that the input formats are not part of a program. See Williams, Layman,

and Sherriff Brief at 4 (“Input formats are the way a user provides instructions to

the software, to guide the mathematical calculations and statistical analyses that the

user needs”) (emphasis added). This is a specification, not a program.

And while the SAS System likely contains some copyrightable elements—

like the source code that implements the computer programs within the System—it

also contains many uncopyrightable elements. Most or all of the purported “works”

at issue in this case—and certainly the “input formats” and the core aspects of the

“output designs”—are well-understood in the industry to be free to replicate. The

“input formats” are merely a programming language, free for all to use. And the

outputs, or “output formats,” are primarily determined by the user-written

programs, not by SAS. As to the implementing code or “computer program”

Case: 21-1542 Document: 60 Page: 20 Filed: 08/31/2021

13

implementing these ideas, it is Amici’s understanding that it is undisputed that

nothing was copied. See WPL Brief at 44 (citing Appx3318-3319 (15:14-16:7)).

III. WHAT SAS AND ITS AMICI CALL “INPUT FORMATS” ARE
SIMPLY A FREE-TO-USE PROGRAMMING LANGUAGE.

SAS defines what it refers to as “input formats” as “the complex sets of

statements designed by SAS, using keywords selected and arranged by SAS, that

are used by the SAS System to carry out statistical analysis, along with their

organization.” SAS Brief at 2. This describes nothing more than the specification

for a programming language. And it has long been understood by the industry

reflected in industry practice that programming languages are free to reimplement.

A. The “input formats” are a programming language.

SAS repeatedly describes its “input formats” by describing a programming

language and its interfaces. For example, in addition to the quote above:

• “Each line involves different ‘Statements,’ some of which also have ‘Options’

that ‘control … different capabilit[ies] of the procedure.’” Id. at 13. This is

merely describing statements, operators, functions, and parameters, all of which

are basic building blocks of programming languages.

• “Each Procedure is separately written and has its own design including its own

syntax, options, statements, and defaults.” Id. at 14 (quotation omitted). The

“design” referred to is just the language itself. The “separately written”

procedure is the implementation—which was not copied here. Again, SAS

Case: 21-1542 Document: 60 Page: 21 Filed: 08/31/2021

14

merely describes how programming languages and the compilers or interpreters

that understand them work.

Williams, Layman, and Sherriff offer a similar explanation, walking through

a description of “input formats” and “PROCs” that will sound familiar to computer

scientists or anyone who is familiar with Google v. Oracle. That explanation is just

a tutorial introduction as to what comprises an interface. See Williams, Layman,

and Sherriff Brief at 8-10.

Older languages called these features “subroutines,” “procedures,” or

“functions,” and newer languages call them “methods,” but the concept is the

same. A named entity that takes input in some prescribed format and produces

output in some prescribed format (and/or changes the state of the system in some

prescribed fashion). The names and inputs are the language, and the code that

actually calculates the results is the implementation. SAS and Williams, Layman,

and Sherriff simply use different words to describe the same thing, further

obfuscating the nature of the copyright claims.

The record and history of this dispute confirm this understanding. “As SAS[]

witnesses have testified, ‘PROC Steps,’ ‘global statements’ and other elements are

‘the language of SAS.’” WPL Brief at 49 (citations record omitted). Input formats

are the language, not the software.

Case: 21-1542 Document: 60 Page: 22 Filed: 08/31/2021

15

B. Programming languages like the “input formats” are not
copyrightable computer programs.

Williams, Layman, and Sherriff argue that “[i]nput formats easily fit within

the Copyright Act’s definition of a ‘computer program[’], which is ‘a set of

statements or instructions to be used directly or indirectly in a computer in order to

bring about a certain result.’” Williams, Layman, and Sherriff Brief at 15. This is a

fundamental technical error. Input formats are part of the specification for a

programming language. But they are not, in and of themselves, a program: there is

no “set of statements,” 17 U.S.C. § 101, and they are not used by a computer in

order to bring about a result.

Importantly, SAS appears to concede that anyone who wants to is free to

write code in the language but simultaneously argues that no one else may write

software that interprets that same code. Appx16 (“WPL presented evidence that the

SAS Language . . . is open and free for public use.”); SAS Inst. Inc. v. World

Programming Ltd., 64 F. Supp. 3d 755, 762 (E.D.N.C. 2014), copyright holding

vacated as moot, 874 F.3d 370 (4th Cir. 2017) (“Anyone can write a program in

the SAS Language, and it is undisputed that no license is needed to do so.”). But in

alleging infringement of the language, SAS uses examples focused on the

admittedly-noninfringing users: “SAS[]’s only example of an ‘input format’ is

from a manual teaching users how to write SAS-Language programs and its

Case: 21-1542 Document: 60 Page: 23 Filed: 08/31/2021

16

putative evidence of ‘copying’ concerns the SAS-Language elements in user

programs that WPS ‘supports.’” WPL Brief at 49.

More importantly, the “language” for writing and implementing is the same

thing, so it cannot be copyrighted in one instance and unprotectable in the other.

The district court in North Carolina addressed this conflict directly in a prior SAS

case against WPL:

In essence, by asking the court to find that defendant's software
infringes its copyright through its processing of elements [of] the SAS
Language, plaintiff seeks to copyright the idea of a program which
interprets and compiles the SAS Language—a language anyone may
use without a license. However, copyright law provides no protection
to ideas.

SAS v. WPL, 64 F. Supp 3d at 776. The North Carolina court was correct: there is

no copyright on the language itself, and that is what WPL copied when it wrote its

own implementation. And SAS cannot copyright the idea of using an

uncopyrighted language.

C. Creativity is a red herring in this case, as creativity alone does not
create copyright protection.

SAS focuses heavily on arguing that it made creative choices in developing

its system. See SAS Brief at 9, 13, 20-21, 34, 48. The existence of at least minimal

creativity does not appear to be in dispute here. But SAS suggests that if something

is creative, it is automatically protected by copyright; this is incorrect.

Case: 21-1542 Document: 60 Page: 24 Filed: 08/31/2021

17

While creativity is a necessary condition for copyrightability, it is not a

sufficient one. Inventions are nearly always creative, but are the subject of patents

rather than copyright, even when described in a book: “To give to the author of the

book an exclusive property in the art described therein, when no examination of its

novelty has ever been officially made, would be a surprise and a fraud upon the

public. That is the province of letters-patent, not of copyright.” Baker v. Selden,

101 U.S. 99, 102 (1879). Discovering laws of nature and other natural phenomena

is likewise a creative endeavor, but is neither the subject of copyright nor patent

protection: “Laws of nature, natural phenomena, and abstract ideas are not

patentable.” Alice Corp. Pty. v. CLS Bank Int'l, 573 U.S. 208, 216 (2014). Just

because something is creative does not mean it is protectable under copyright law.

D. It is irrelevant that there are other ways to create incompatible
competitive software.

SAS argues that “there are other ways of creating data analysis software.”

SAS Brief at 21 (capitalization changes omitted). Williams, Layman, and Sherriff

make the same argument. See Williams, Layman, and Sherriff Brief at 20 (“There

are many other ways to design input formats”), 24 (“Nothing about the underlying

analysis or data requires this particular format.”). While technically true, this is

both misleading and irrelevant.

First, the availability of alternatives for an uncopyrightable set of “input

formats” doesn’t render the idea copyrightable. Second, this suggestion results in

Case: 21-1542 Document: 60 Page: 25 Filed: 08/31/2021

18

incompatible software. When it comes to building software that existing users can

benefit from, it is not truly an “alternative” if it results in incompatible software. If

the “alternative” is using different commands, then it won’t understand code that

users write in the language they already know. Similarly, if the “alternative” is

having software produce substantially different output for the same input, then the

competitive software will be useless. One must reuse the freely available language

to produce, as WPL has, different software that speaks the same language the

developers do.

IV. “OUTPUT FORMATS” ARE MERELY THE RESULTS OF
EXECUTING THE USER-PROVIDED CODE.

SAS also claims copyright on the “output formats” of its software. SAS Brief

at 16-24. Like the inputs, the output formats are not software. And to the extent

WPL copied these output formats, it appears to have copied only the

uncopyrightable elements that are demanded by the functionality of the language.

Notably, SAS does not say that the WPS outputs are the same as SAS’s; instead, it

says “that WPS has displays that are ‘equivalent’ to SAS’s Output Designs with

‘similar graphical output.’” SAS Brief at 25 (quoting Appx10) (emphasis added).

This is important because the output formats are not creative expression by

the platform developer. They are defined by the results of the PROC—in other

words, by what code the user (not SAS) has written. The PROC is, in essence, a

machine that turns its inputs into its outputs, and if someone else wants to make a

Case: 21-1542 Document: 60 Page: 26 Filed: 08/31/2021

19

compatible “machine” that is usable by programmers trained to operate the first

one, it must accept the same input formats and generate the same output.

In other words, if a user asks for 2 + 2, the software must produce 4. If the

user asks the software to display a table, it must look like a table. If the user asks

for a bar graph, then the graph must have bars. There is room for creativity in the

implementation of how those things are displayed, but that room is limited. For the

rest, it is the user’s creativity, and not SAS’s, that is relevant.

This is shown by the comparisons made by both SAS and Williams, Layman,

and Sherriff, portions of which we reproduce here:

SAS Brief at 26 (image cropped).

Williams, Layman, and Sherriff Brief at 24 (image cropped).

While the values and names of the output are the same and both are

produced in tables—as determined by the user’s input—there are significant

differences in how the tables are presented. The fonts, lining, spacing, and colors

Case: 21-1542 Document: 60 Page: 27 Filed: 08/31/2021

20

all differ; even the headings are different (“highest” and “lowest” present only on

the left). In other words, the only things even arguably copied were those derived

from the user’s input in accordance with the language’s specification.

SAS’s own witnesses confirmed that the user specifies “virtually ‘all’ the[]

details” of the output and identified the highlighted portion below as user-defined:

WPL Brief at 7-8 (citation omitted and image cropped). Witnesses similarly

confirmed that the “[o]utputs are the ‘function of the SAS [Language] program that

a customer uses and the customer’s data’” Id. at 53 (citations omitted).

When given the input “2 + 2,” a calculator must produce “4” as the output.

The same is true for any well-defined computer language. It cannot be the case that

copyright allows developers to write software that understands the same input but

bars writing software that produces the output the user requested.

Case: 21-1542 Document: 60 Page: 28 Filed: 08/31/2021

21

CONCLUSION

As explained above, SAS does not dispute that the language is free to use for

developers. This language is not software and not a work subject to copyright, and

so writing new software that understands the language or produces the same results

for the same operations must similarly remain free. To hold otherwise would be to

undermine over half a century of practice in the software development industry—

practice that has given us the powerful software and vibrant software market we

enjoy today. Amici therefore respectfully request that the Court affirm the decision

below.

 /s/Jeffrey Theodore Pearlman
Jef Pearlman
Counsel for Amici Curiae

August 30, 2021

Case: 21-1542 Document: 60 Page: 29 Filed: 08/31/2021

B-1

APPENDIX — LIST OF AMICI

Amici sign this brief on their own behalf, not on behalf of the organizations

with which they are affiliated.

1. Dr. Harold Abelson. Professor, MIT. Co-author, innovative introductory CS

text with worldwide impact. Founding director, Creative Commons, Public

Knowledge. Four major awards for contributions to CS education. Fellow,

IEEE.

2. Jon Bentley. Researcher: programming techniques, tools, algorithms.

Previously, Distinguished Member of Technical Staff, Bell Labs; Professor,

Carnegie-Mellon; visiting faculty, West Point, Princeton.

3. Matthew Bishop. Professor, UC Davis. Author, Computer Security: Art and

Science.

4. Joshua Bloch. Professor, Carnegie-Mellon. Specialist in API Design.

Previously, Chief Java Architect, Google; Distinguished Engineer, Sun

Microsystems. Led design, implementation of numerous Java APIs. Author,

Effective Java.

5. Gilad Bracha. Creator Newspeak programming language. Previously,

Scientist, Google; VP, SAP Labs; Distinguished Engineer, Sun Microsystems.

Co-author, Java Language and VM Specifications. Dahl-Nygaard Prize.

Case: 21-1542 Document: 60 Page: 30 Filed: 08/31/2021

B-2

6. Daniel Bricklin. Conceived and co-developed VisiCalc, the first spreadsheet.

Fellow, CHM, ACM. Member, NAE. ACM Software System Award, ACM

Grace Murray Hopper Award.

7. Frederick P. Brooks, Jr. Professor Emeritus, UNC Chapel Hill. Project

Manager, IBM System/360 hardware and OS/360 software. Architect, Stretch

and Harvest supercomputers. Founder UNC’s CS Department. Author, The

Mythical Man-Month. National Medal of Technology, ACM Turing Award.

Member, NAS, NAE, British and Dutch academies.

8. R.G.G. Cattell. Distinguished Engineer, Sun Microsystems; Researcher, Xerox

PARC, CMU. Responsible for numerous APIs including Enterprise Java,

JDBC. Author, first monograph on object/relational databases. Fellow, ACM.

9. David Clark. Internet pioneer. Senior Research Scientist, MIT CSAIL;

Technical Director, MIT IPRI. Was Chief Protocol Architect, Internet

Activities Board; Chairman, National Academies CSTB. Member, NAE,

AAoAS.

10. William Cook. Professor, UT Austin. Chief architect, AppleScript. Dahl-

Nygaard Prize.

11. Thomas H. Cormen. Professor, Dartmouth College. Co-author, Introduction to

Algorithms. Formerly chair, Dartmouth CS department. ACM Distinguished

Educator.

Case: 21-1542 Document: 60 Page: 31 Filed: 08/31/2021

B-3

12. Miguel de Icaza. Distinguished Engineer, Microsoft. Cofounder, GNOME,

Mono (reimplementing Microsoft’s .NET platform on Linux). FSF Software

Award, MIT Technology Review Innovator of the Year.

13. Dr. L Peter Deutsch. Co-developed Interlisp-D, Smalltalk-80 at Xerox PARC.

Originated Just-In-Time Compilation. Created Ghostscript open-source

reimplementation of PostScript. ACM Software System Award. Fellow, ACM.

14. Whitfield Diffie. Discovered public key cryptography, which underlies all

modern secure communication. Previously, Chief Security Officer, Sun

Microsystems; Manager, Secure Systems Research, Bell-Northern Research.

ACM Turing Award. Member, NAE, Royal Society.

15. David L. Dill. Donald E. Knuth Professor, Emeritus, Stanford. Fellow, IEEE,

ACM. Member, NAE, AAoAS. Computer-Aided Verification Award, Alonzo

Church Award.

16. Dawson Engler. Professor, Stanford. ACM Grace Murray Hopper Award,

Mark Weiser Award, Numerous Best Paper awards.

17. Bob Frankston. Co-founder, Software Arts. Implemented VisiCalc (first

spreadsheet). Fellow, IEEE, ACM, CHM. ACM Software System Award.

Case: 21-1542 Document: 60 Page: 32 Filed: 08/31/2021

B-4

18. Neal Gafter. Software Architect, Facebook: Lead, Machine Learning

Programming Language framework. Previously Principal Engineer, Microsoft:

Technical lead, Roslyn Project; Software Engineer, Google; Senior Staff, Sun

Microsystems. Developed C++, Java, and C# languages and compilers.

19. Erich Gamma. Microsoft Technical Fellow. Co-author, Design Patterns:

elements of reusable object-oriented software, which won ACM Programming

Language Award. Previously, Distinguished Engineer, IBM. ACM Software

System Award.

20. Andrew Glover. Director, Delivery Engineering, Netflix. Steering Committee

Chair, Spinnaker Open Source project. Author, Java Testing Patterns.

21. Allan Gottlieb. Professor, NYU. Led Ultracomputer group which introduced

fetch-and-add instruction still in use today.

22. Robert Harper. Professor, Carnegie-Mellon. Co-designer, Standard ML

programming language. Allen Newell Medal for Research Excellence, Herbert

Simon Award for Teaching Excellence. Fellow, ACM.

23. Maurice Herlihy. Professor, Brown. Previously, Carnegie-Mellon. Dijkstra

Prize in Distributed Computing, Gödel Prize in theoretical computer science,

Fulbright Distinguished Chair. Fellow, ACM, AAoAS, National Academy of

Inventors.

Case: 21-1542 Document: 60 Page: 33 Filed: 08/31/2021

B-5

24. Tom Jennings. Faculty, Calarts Art+Technology Program, retired. Co-wrote

Phoenix Software’s IBM compatible ROM BIOS. Creator of FidoNet, the first

and most influential message and file networking system.

25. Alan Kay. Pioneer in object-oriented programming, personal computing,

GUIs. Co-author, Smalltalk programming language. Positions at HP, Disney,

Apple, Xerox PARC, Atari. ACM Turing Award, NAE Draper Prize, Kyoto

Prize. Member, AAAS, NAE, AAoAS. Fellow, ACM, CHM, Royal Society of

Arts.

26. Brian Kernighan. Professor, Princeton. Unix pioneer, Bell Labs. Co-creator,

AWK programming language. Co-author, 13 books including seminal work on

C programming language. Member, NAE, AAoAS.

27. David Klausner. Fifty years software/hardware experience at Microsoft,

AT&T, Cisco, IBM, Hewlett Packard, Intel.

28. Kin Lane. Computer scientist working on API technology, business, politics.

Twenty years' API experience as programmer, architect, executive, and

currently the Director of Postman Open Technologies.

29. Ed Lazowska. Professor, University of Washington. Member, NAE,

Washington State Academy of Sciences. Fellow, ACM, IEEE. Member, NAE,

AAoAS. Past co-chair, President’s Information Technology Advisory

Committee.

Case: 21-1542 Document: 60 Page: 34 Filed: 08/31/2021

B-6

30. Douglas Lea. Professor and Department Chair, SUNY Oswego. Creator of

Java concurrency APIs. Author, Concurrent Programming in Java. Dahl–

Nygaard Prize. Fellow, ACM.

31. Bob Lee. CEO, Present Company. Previously, CTO, Square; Staff Engineer,

Google. Led Android core library team, created Guice framework.

32. Harry Lewis. Professor, Harvard. Students included Bill Gates, Mark

Zuckerberg. Previously dean, Harvard College; interim dean, Harvard’s

School of Engineering and Applied Sciences.

33. Douglas McIlroy. Professor, Dartmouth. Headed Bell Laboratories department

that originated Unix. Many contributions to Unix including pipes abstraction.

Designer, PL/I programming language. USENIX lifetime achievement award,

programming tools award. Fellow, AAAS. Member, NAE.

34. Paul Menchini. CTO & CISO, North Carolina School of Science and

Mathematics. Previously, HP, Intel, GE. Edited IEEE VHDL Standard.

Developed first commercially successful VHDL compiler. IEEE Senior Life &

Inaugural Golden Core member.

35. James H. Morris. Professor Emeritus, Carnegie-Mellon. Previously dean,

department head; Professor, UC Berkeley; Principal Scientist and Research

Fellow, Xerox PARC. Co-inventor, Knuth-Morris-Pratt algorithm. Fellow,

ACM.

Case: 21-1542 Document: 60 Page: 35 Filed: 08/31/2021

B-7

36. Peter Norvig. Google Director of Research. Previously directed Google’s

search algorithms group. Co-author, Artificial Intelligence: A Modern

Approach. Fellow, AAAI, ACM, AAoAS.

37. Martin Odersky. Professor, EPFL (Lausanne, Switzerland). Creator, Scala

programming language. Designed original Java generics. Wrote Java compiler.

38. David Patterson. Professor Emeritus, Berkeley. Previously Director, Parallel

Computing Lab; Chair, CS Division; Chair, Computing Research Association;

President, ACM. Projects included Reduced Instruction Set Computers

(RISC), Redundant Arrays of Inexpensive Disks (RAID), and Network of

Workstations. All led to multibillion-dollar industries. Forty honors including

ACM Turing Award, IEEE John von Neumann Medal. Member, NAE, NAS,

AAoAS. Fellow, AAAS, CHM, ACM, IEEE.

39. Tim Peierls. President, Seat Yourself. Previously, VP, Descartes Systems

Group; MTS, Bell Labs. Member, four expert groups developing Java API

specifications. Co-author, Java Concurrency in Practice.

40. Curtis Schroeder. Computer Scientist, Draper. Served as editor for widely

reimplemented SISO CIGI API. Previously, Antycip Simulation, Lockheed

Martin.

Case: 21-1542 Document: 60 Page: 36 Filed: 08/31/2021

B-8

41. Robert Sedgewick. Founding chair and professor, Princeton CS Department.

Co-inventor, Red-Black tree data structure. Author, 20 books including

million-selling Algorithms. Steele Prize, ACM Karlstrom Award. Fellow,

ACM.

42. Mary Shaw. Professor, Carnegie-Mellon. Specialist in software engineering.

National Medal of Technology and Innovation, ACM SIGSOFT Outstanding

Research Award, IEEE Distinguished Women in Software Engineering

Award. Fellow ACM, IEEE, AAAS.

43. Alfred Z. Spector. Writer. Previously, CTO, Two Sigma; VP of Research,

Google; CTO, IBM Software; VP, IBM Services and Software; Professor,

Carnegie-Mellon. Fellow, IEEE, ACM. Member, NAE, AAoAS. IEEE Kanai

Award for Distributed Computing, ACM Software Systems Award.

44. Michael Stonebraker. Data base pioneer. Main architect, INGRES relational

DBMS, POSTGRES object-relational DBMS. CTO, Paradigm4, Tamr;

Professor, MIT. Previously Professor, UC Berkeley. ACM Turing Award,

IEEE John von Neumann Medal, ACM System Software Award, SIGMOD

Innovations Award. Member, NAE.

Case: 21-1542 Document: 60 Page: 37 Filed: 08/31/2021

B-9

45. Ivan E. Sutherland. Professor, founder of Asynchronous Research Center,

Portland State. Previously, Technical Fellow, Sun Microsystems. 1963 MIT

Ph.D., Sketchpad, is widely known; he has been called “the father of computer

graphics.” ACM Turing Award, IEEE John von Neumann Medal, Kyoto Prize.

Fellow, ACM, CHM. Member, NAE, NAS.

46. Andrew Tanenbaum. Professor emeritus, Vrije Universiteit. Principal designer,

Linux-precursor MINIX. Author, 24 books . Member, Royal Netherlands

Academy of Arts and Sciences. Fellow ACM, IEEE. USENIX Lifetime

Achievement Award, Eurosys Lifetime Achievement Award.

47. Brad Templeton. Founder, ClariNet (perhaps the earliest dot-com company).

First employee, Personal Software/Visicorp (first major microcomputer

applications company). Author, numerous microcomputer software titles.

Chairman Emeritus, EFF.

48. Andries van Dam. Professor, Brown University. Cofounder ACM

SICGRAPH. Co-author Computer Graphics: Principles and Practice. Fellow

IEEE, ACM. Member NAE, AAoAS. Numerous awards including IEEE

Centennial Medal.

49. Guido van Rossum. Created Python programming language. Was Principal

Engineer, Dropbox; Senior Staff, Google. ACM Distinguished Engineer.

Fellow, CHM, CWI Dijkstra.

Case: 21-1542 Document: 60 Page: 38 Filed: 08/31/2021

B-10

50. John Villasenor. UCLA professor of electrical engineering, law, and public

policy. Director of the UCLA Institute for Technology, Law, and Policy.

Brookings Institution senior fellow. Hoover Institution senior fellow.

51. Jan Vitek. Professor, Northeastern. Specialist in programming languages.

Chief Scientist, Fiji Systems. Past Chair, ACM SIGPLAN.

52. James Waldo. Professor, CTO, Harvard. Was Distinguished Engineer, Sun

Microsystems; developed Java APIs for distributed systems. Author, Java: The

Good Parts.

53. Dan Wallach. Professor, Rice University. Rice Scholar, Baker Institute for

Public Policy. Former member, Air Force Science Advisory Board, USENIX

Board of Directors.

54. Frank Yellin. Original member, Sun Microsystems' Java Project. Co-author,

The Java Virtual Machine Specification, Java API specification. Formerly

Google, Lucid.

Case: 21-1542 Document: 60 Page: 39 Filed: 08/31/2021

FORM 19. Certificate of Compliance with Type-Volume Limitations Form 19
July 2020

UNITED STATES COURT OF APPEALS
FOR THE FEDERAL CIRCUIT

CERTIFICATE OF COMPLIANCE WITH TYPE-VOLUME LIMITATIONS

Case Number:

Short Case Caption:

Instructions: When computing a word, line, or page count, you may exclude any
items listed as exempted under Fed. R. App. P. 5(c), Fed. R. App. P. 21(d), Fed. R.
App. P. 27(d)(2), Fed. R. App. P. 32(f), or Fed. Cir. R. 32(b)(2).

The foregoing filing complies with the relevant type-volume limitation of the
Federal Rules of Appellate Procedure and Federal Circuit Rules because it meets
one of the following:

the filing has been prepared using a proportionally-spaced typeface
and includes __________ words.

the filing has been prepared using a monospaced typeface and includes
__________ lines of text.

the filing contains __________ pages / __________ words / __________
lines of text, which does not exceed the maximum authorized by this
court’s order (ECF No. __________).

Date: _________________ Signature:

Name:

2021-1542

SAS Institute, Inc. v. World Programming Limited

✔

6005

08/30/2021 /s/Jeffrey Theodore Pearlman

Jeffrey Theodore Pearlman

Case: 21-1542 Document: 60 Page: 40 Filed: 08/31/2021

